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Abstract
In this paper, new physical limitations on the extinction cross section and
broadband scattering are investigated. A measure of broadband scattering
in terms of the integrated extinction is derived for a large class of scatterers
based on the holomorphic properties of the forward scattering dyadic. Closed-
form expressions of the integrated extinction are given for the homogeneous
ellipsoids, and theoretical bounds are discussed for arbitrary heterogeneous
scatterers. Finally, the theoretical results are illustrated by numerical
computations for a series of generic scatterers.

PACS numbers: 42.25.Fx, 42.25.Bs, 41.20.Jb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The relation between the extinction cross section and the forward scattering dyadic, nowadays
known as the optical theorem, dates back to the work of Rayleigh more than a century ago
[26]. Since then, the concept has fruitfully been extended to high-energy physics where it
today plays an essential role in analyzing particle collisions [19]. This is one striking example
of how results, with minor modifications, can be used in both electromagnetic and quantum
mechanic scattering theory. Another example of such an analogy is presented in this paper,
and it is believed that more analogies of this kind exist, see, e.g., the excellent books by Taylor
[27] and Nussenzveig [21].

As far as the authors know, a broadband measure for scattering of electromagnetic waves
was first introduced by Purcell [23] in 1969 concerning absorption and emission of radiation by
interstellar dust. Purcell derived the integrated extinction for a very narrow class of scatterers
via the Kramers–Kronig relations [16, pp 279–83]. A slightly different derivation of the same
result was done by Bohren and Huffman [4, pp 116, 117]. In both references it was noticed
that the integrated extinction is proportional to the volume of the scatterer, with proportionality
factor depending only on the shape and the long wavelength limit response of the scatterer.
Based upon this observation, Bohren and Huffman conjecture [4, p 117]
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Figure 1. Illustration of the scattering problem. The scatterer V is subject to a plane wave incident
in the k̂-direction.

Regardless of the shape of the particle, however, it is plausible on physical grounds
that integrated extinction should be proportional to the volume of an arbitrary particle,
where the proportionality factor depends on its shape and static dielectric function.

Curiosity about whether this supposition is true and the generalization of the results to a
wider class of scatterers have been the main driving forces of the present study.

Physical limitations on scattering of electromagnetic waves play an important role in
the understanding of wave interaction with matter. Specifically, numerous papers addressing
physical limitations in antenna theory are found in the literature. Unfortunately, they are almost
all restricted to the spherical geometry, deviating only slightly from the pioneering work of
Chu [5] in 1948. In contrast to antenna theory, there are, however, few papers addressing
physical limitations in scattering by electromagnetic waves. An invaluable exception is given
by the fundamental work of Nussenzveig [20] in which both scattering by waves and particles
are analyzed in terms of causality. Other exceptions of importance for the present paper are
the Rayleigh scattering bounds derived by Jones [10, 11].

The results of Purcell mentioned above are generalized in several ways in this paper. The
integrated extinction is proved to be valid for anisotropic heterogeneous scatterers of arbitrary
shape. Specifically, this quantity is analyzed in detail for the ellipsoidal geometry. Several
kinds of upper and lower bounds on broadband scattering for isotropic material models are
presented. These limitations give a means of determining if an extinction cross section is
realizable or not.

The paper is organized as follows: in section 2, the integrated extinction is derived
for a large class of scatterers based on the holomorphic properties of the forward scattering
dyadic. Next, in section 3, bounds on broadband scattering are discussed for arbitrary isotropic
heterogeneous scatterers. In the following section, section 4, some closed-form expressions of
the integrated extinction are given. Moreover, in section 5, numerical results on the extinction
cross section are presented and compared with the theoretical bounds. Finally, some future
work and possible applications are discussed in section 6.

Throughout this paper, vectors are denoted in italic bold face and dyadics in roman bold
face. A hat (ˆ) on a vector denotes that the vector is of unit length.

2. Broadband scattering

The scattering problem considered in this paper is Fourier-synthesized plane wave scattering
by a bounded heterogeneous obstacle of arbitrary shape, see figure 1. The scatterer is modeled
by the anisotropic constitutive relations [16, chapter XI] and assumed to be surrounded by free
space. The analysis presented in this paper includes the perfectly electric conducting material
model, as well as general temporal dispersion with or without a conductivity term.
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2.1. The forward scattering dyadic

The scattering properties of V are described by the far field amplitude, F , defined in terms of
the scattered field, Es, as [15, section 2]

Es(t,x) = F (c0t − x, x̂)

x
+ O(x−2) as x → ∞, (2.1)

where c0 is the speed of light in vacuum, and x̂ = x/x with x = |x|. The far field amplitude
is related to the incident field, Ei(c0t − k̂ · x), which is impinging in the k̂-direction, via the
linear and time-translational invariant convolution

F (τ, x̂) =
∫ ∞

−∞
St(τ − τ ′, k̂, x̂) · Ei(τ

′) dτ ′.

The dimensionless temporal scattering dyadic St is assumed to be causal in the forward
direction, k̂, in the sense that the scattered field cannot precede the incident field [20, pp 15,
16], i.e.,

St(τ, k̂, k̂) = 0 for τ < 0. (2.2)

The Fourier transform of (2.1) evaluated in the forward direction is

Es(k, xk̂) = eikx

x
S(k, k̂) · E0 + O(x−2) as x → ∞,

where k is a complex variable in the upper half plane with Re k = ω/c0. Here, the amplitude
of the incident field is E0, and the forward scattering dyadic, S, is given by the Fourier
representation

S(k, k̂) =
∫ ∞

0−
St(τ, k̂, k̂) eikτ dτ. (2.3)

The imaginary part of k improves the convergence of (2.3) and extends the elements of S
to holomorphic functions in the upper half plane for a large class of dyadics St. Recall that
S(ik, k̂) is real-valued for real-valued k and S(ik, k̂) = S∗(−ik∗, k̂) [20, sections 1.3 and 1.4].

The scattering cross section σs and absorption cross section σa are defined as the ratio
of the scattered and absorbed power, respectively, to the incident power flow density in the
forward direction. The sum of the scattering and absorption cross sections is the extinction
cross section,

σext = σs + σa.

The three cross sections are by definition real-valued and non-negative. The extinction cross
section is related to the forward scattering dyadic, S, via the optical theorem [19, pp 18–20]:

σext(k) = 4π

k
Im

{
p̂∗

e · S(k, k̂) · p̂e

}
. (2.4)

Here, k is real-valued, and p̂e = E0/|E0| is a complex-valued vector, independent of k, that
represents the electric polarization, and, moreover, satisfies p̂e · k̂ = 0.

The holomorphic properties of S can be used to determine an integral identity for the
extinction cross section. To simplify the notation, let �(k) = p̂∗

e · S(k, k̂) · p̂e/k2. The Cauchy
integral theorem with respect to the contour in figure 2 then yields

�(iε) =
∫ π

0

�(iε − ε eiφ)

2π
dφ +

∫ π

0

�(iε + R eiφ)

2π
dφ +

∫
ε<|k|<R

�(k + iε)

2π ik
dk, (2.5)

where k in the last integral on the right-hand side is real-valued.
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Figure 2. Integration contour used in the Cauchy integral theorem in (2.5).

The left-hand side of (2.5) and the integrand in the first integral on the right-hand side are
well defined in the limit ε → 0 and given by the long wavelength limit [15, p 18]:

�(iε) = 1

4π
(p̂∗

e · γe · p̂e + p̂∗
m · γm · p̂m) + O(ε) as ε → 0. (2.6)

Here, p̂m = k̂ × p̂e denotes the magnetic polarization and γe and γm are the electric and
magnetic polarizability dyadics, respectively, see the appendix for their explicit definitions.
These dyadics are real-valued and symmetric. This result also includes the effect of a
conductivity term [15, pp 49–51].

The second term on the right-hand side of (2.5) is assumed to approach zero and does
not contribute in the limit R → ∞. This is physically reasonable since the short wavelength
response of a material is non-unique from a modeling point of view [8]. The assumption is
also motivated by the extinction paradox [29, pp 107–13], i.e.,

�(k) = −A(k̂)

2π ik
(1 + O(|k|−1)) as |k| → ∞, Im k � 0,

where A denotes the projected area in the forward direction.
In the last term on the right-hand side of (2.5) it is assumed that � is sufficiently regular

to extend the contour to the real axis. Under this assumption, the real part of (2.5) yields

Re �(0) = 1

π

∫ ∞

−∞

Im �(k)

k
dk = 1

4π2

∫ ∞

−∞

σext(k)

k2
dk = 1

4π3

∫ ∞

0
σext(λ) dλ, (2.7)

where we have used the optical theorem, (2.4). In this expression λ = 2π/k is the vacuum
wavelength.

In fact, the assumptions on � can be relaxed, and the analysis can be generalized to
certain classes of distributions [20, pp 33–43]. However, the integral in (2.7) is classically
well defined for the examples considered in this paper. The relation (2.7) can also be derived
using the Hilbert transform [28, chapter V].

2.2. The integrated extinction

We are now ready to utilize the main result in the previous section. Moreover, the properties
of the polarizability dyadics are exploited, and the important results of Jones [10, 11] are
invoked.

Insertion of the long wavelength limit (2.6) into (2.7) yields the integrated extinction∫ ∞

0
σext(λ) dλ = π2(p̂∗

e · γe · p̂e + p̂∗
m · γm · p̂m). (2.8)

Note that (2.8) is independent of any temporal dispersion, depending only on the long
wavelength limit response of the scatterer in terms of γe and γm. Closed-form expressions of
γe and γm exist for the homogeneous ellipsoids, see section 4. The polarizability dyadics for
more general obstacles are summarized in Kleinman and Senior [15, p 31].
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For pure electric (γm = 0) and pure magnetic (γe = 0) scatterers, the integrated extinction
depends only on p̂e and p̂m, respectively, and hence not on k̂ = p̂e × p̂m. Moreover, the
integrated extinction for a scatterer with isotropic polarizability dyadics, i.e., γe = γeI and
γm = γmI, is independent of p̂e and p̂m as well as k̂.

An important variational result can be established for isotropic material parameters
with the long wavelength limit response given by the electric and magnetic susceptibilities,
χe(x) and χm(x), respectively. The result states that the integrated extinction increases
monotonically with increasing χe(x) and χm(x) for each x ∈ R

3 [11, theorem 1], i.e.,

χi1(x) � χi2(x), x ∈ R
3 �⇒

∫ ∞

0
σext1(λ) dλ �

∫ ∞

0
σext2(λ) dλ, (2.9)

where i = e, m. Recall that Kramers–Kronig relations [16, pp 279–81] imply that χe(x) and
χm(x) pointwise are non-negative, provided the conductivity is zero. If the conductivity of
the scatterer is non-zero, the electric polarizability dyadic, γe, can be determined by letting
the electric susceptibility becoming infinitely large [15, pp 49, 50]. As a consequence of
(2.9), no heterogeneous scatterer has a larger integrated extinction than the corresponding
homogeneous one with maximal susceptibility.

An important model in many applications is the perfectly conducting case (PEC), which
is formally obtained—in the long wavelength limit—by the limits [15, pp 39, 40]

χe(x) → ∞ and χm(x) ↘ −1. (2.10)

Since the long wavelength limit lacks a natural length scale it follows that the integrated
extinction for any heterogeneous scatterer is proportional to the volume |V | = ∫

V
dVx, where

dVx is the volume measure with respect to x—a result conjectured by Bohren and Huffman
[4, p 117] for spherical scatterers. A brief derivation of this statement for heterogeneous,
anisotropic material parameters is presented in the appendix.

Randomly oriented scatterers are valuable in many applications [23]. The broadband
scattering properties of an ensemble of randomly oriented scatterers are quantified by the
averaged integrated extinction,∫ ∞

0
σ̄ext(λ) dλ = π2

3
tr(γe + γm). (2.11)

An interesting variational result based on (2.11) states that among all isotropic, homogeneous
scatterers of equal volume and susceptibilities, the spherical scatterer minimizes the averaged
integrated extinction [10, theorem 3].

3. Bounds on broadband scattering

The main result of section 2.2, (2.8), is now exploited. Firstly, upper and lower bounds on
the integrated extinction utilizing the eigenvalue properties of the polarizability dyadics are
established. These estimates are followed by two additional upper and lower bounds based on
the results of Jones [10, 11].

3.1. Eigenvalue estimates

Since the extinction cross section is non-negative, it is clear that for any wavelength interval
Λ ⊂ [0,∞)

|Λ| min
λ∈Λ

σ(λ) �
∫

Λ

σ(λ) dλ �
∫ ∞

0
σext(λ) dλ, (3.1)
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where |Λ| is the absolute bandwidth and σ denotes any of the extinction, scattering and
absorption cross sections σext, σs and σa, respectively.

The static polarizability dyadics γe and γm are real-valued and symmetric, and hence
diagonalizable with real-valued eigenvalues γej and γmj with j = 1, 2, 3, respectively, ordered
as γe1 � γe2 � γe3 and γm1 � γm2 � γm3. Since the right-hand side of (2.8) is the Rayleigh
quotients of γe and γm, their largest and smallest eigenvalues bound (2.8) according to standard
matrix theory1, namely,

π2(γe3 + γm3) �
∫ ∞

0
σext(λ) dλ � π2(γe1 + γm1). (3.2)

Equality on the left (right) hand side of (3.2) holds when p̂e is a unit eigenvector of γe with
eigenvalue γe3 (γe1) and p̂m simultaneously is a unit eigenvector of γm with eigenvalue γm3

(γm1).

3.2. Scatterers of arbitrary shape

Broadband scattering in the sense of the integrated extinction is according to (3.2) directly
related to the eigenvalues of the static polarizability dyadics. Lemma 2 in Jones [11] applied
to (3.2) yields

π2
∫

V

χe(x)

χe(x) + 1
+

χm(x)

χm(x) + 1
dVx �

∫ ∞

0
σext(λ) dλ � π2

∫
V

χe(x) + χm(x) dVx. (3.3)

The bounds in (3.3) are sharp in the sense that equality can be obtained as a limiting process
for certain homogeneous ellipsoids, see section 4.

The right-hand side of (3.3) is bounded from above by |V |‖χe + χm‖∞, where ‖f ‖∞ =
supx∈V |f (x)| denotes the supremum norm. As a consequence, the upper bound on the
integrated extinction for any heterogeneous scatterer is less than or equal to the integrated
extinction for the corresponding homogeneous scatterer with susceptibilities ‖χe‖∞ and
‖χm‖∞. This observation leads to the conclusion that there is no fundamental difference
on the integrated extinction between scattering by heterogeneous and homogeneous obstacles.

For weak scatterers in the sense of the Born approximation, ‖χe + χm‖∞ � 1, and (3.3)
implies ∫ ∞

0
σext(λ) dλ = π2

∫
V

χe(x) + χm(x) dVx + O
(‖χe + χm‖2

∞
)
, (3.4)

where the Taylor series expansion 1/(1 + x) = 1 + O(x) for |x| < 1 has been used. Note that
(3.4) reduces to a particularly simple form for homogeneous scatterers.

3.3. Star-shaped scatterers

Due to (2.9), it is possible to derive upper bounds on the integrated extinction by applying the
bounds to the corresponding homogeneous scatterer with susceptibilities ‖χe‖∞ and ‖χm‖∞.
To this end, assume V is star-shaped in the sense that KV �= ∅, where KV is the set of x ∈ V

such that for all y ∈ V and 0 � s � 1 the straight line x + (1 − s)y is contained in V , i.e.,
if it has an interior point from which its entire boundary can be seen. For a convex scatterer,
KV = V .

1 If the eigenvectors corresponding to the largest eigenvalues are the same for the electric and magnetic cases, the
bounds in (3.2) can be sharpened.
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Figure 3. Geometry for the star-shape parameterization.

A refined upper bound on γe1 and γm1 [10, theorem 5] applied to (3.2), also taking into
account the shape of V , yields the inequality∫ ∞

0
σext(λ) dλ � π2|V |ψ

( ‖χe‖∞
ψ + ‖χe‖∞

+
‖χm‖∞

ψ + ‖χm‖∞

)
, (3.5)

where the geometrical factor ψ is defined by

ψ = 3

|V | max
j

∫
S

(êj · r)2

r · ν̂
dSr � 9

|V |
∫

S

r2

r · ν̂
dSr. (3.6)

Here, êj denote mutually orthonormal vectors and dSr is the surface measure of S with respect
to r (S is the bounding surface of V ). The denominator in (3.6) is the distance from the tangent
plane to the origin, see figure 3. The upper bound in (3.6) is independent of the coordinate
system orientation but depends on the location of the origin.

Furthermore, the right-hand side of (3.5) is bounded from above by either ‖χe‖∞ and
‖χm‖∞ or ψ . The first case yields (3.3) for a homogeneous scatterer (material parameters
‖χe‖∞ and ‖χm‖∞), while the latter implies∫ ∞

0
σext(λ) dλ � 2π2|V |ψ, (3.7)

irrespectively of the material parameters of V . By comparing (3.3) with (3.7), it is clear that
(3.7) provides the sharpest bound when 2ψ < ‖χe + χm‖∞. Note that (2.9) implies that it is
possible to evaluate (3.6) for any surface circumscribing the scatterer V .

The geometrical factor for the oblate spheroid is ψ = 3(4 + ξ−2)/5 and for the prolate
spheroid ψ = 3(3 + 2ξ−2)/5 (the origin at the center of the spheroid), where ξ ∈ [0, 1]
is the ratio of the minor to the major semi-axis. In particular, ψ = 3 for the sphere.
The bound in (3.5) is isoperimetric since equality holds for the homogeneous sphere, see
section 4. The geometrical factor ψ for the circular cylinder of radius b and length � is2

ψ = max{3 + 3b2/�2, 3 + �2/2b2}.

3.4. Jung’s theorem

Jung’s theorem [13] gives an optimal upper bound on the radius of a bounded subset V ⊂ R
3

in terms of its diameter, diam V . The theorem states that V is contained in the unique sphere of
radius RV �

√
6/4 diam V , with equality if and only if the closure of V contains the vertices

2 This expression deviates from the result of Jones [10].
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of a tetrahedron of edge lengths equal to diam V . Since ψ = 3 for the sphere and |V | is
bounded from above by the volume of the sphere of radius RV , (3.5) yields∫ ∞

0
σext(λ) dλ � π33

√
6

8
(diam V )3

( ‖χe‖∞
3 + ‖χe‖∞

+
‖χm‖∞

3 + ‖χm‖∞

)
. (3.8)

The right-hand side of (3.8) can be estimated from above independently of the material
parameters. We get∫ ∞

0
σext(λ) dλ � π33

√
6

4
(diam V )3,

which is useful in cases where the right-hand side of (3.7) diverges.
In this section, we have applied Jung’s theorem to a sphere circumscribing the scatterer.

There are, however, other choices of circumscribing surfaces that can be utilized [9].

4. Homogeneous ellipsoidal scatterers

For homogeneous, anisotropic ellipsoidal scatterers with susceptibility dyadics χe and χm,
closed-form expressions of γe and γm exist [12], namely,

γi = |V |χi · (I + L · χi )
−1, i = e, m (4.1)

where L and I are the depolarizing and unit dyadics in R
3, respectively. In terms of the

semi-axes aj in the êj -direction, the volume |V | = 4πa1a2a3/3. The depolarizing dyadic has
unit trace, and is real-valued and symmetric [30], and, hence, diagonalizable with real-valued
eigenvalues. Its eigenvalues are the depolarizing factors Lj [6, 22]:

Lj = a1a2a3

2

∫ ∞

0

ds(
s + a2

j

)√(
s + a2

1

)(
s + a2

2

)(
s + a2

3

) , j = 1, 2, 3. (4.2)

The depolarizing factors satisfy 0 � Lj � 1 and
∑

j Lj = 1.
Closed-form expressions of (4.2) exist in the special case of the ellipsoids of revolution,

i.e., the prolate and oblate spheroids. In terms of the eccentricity e =
√

1 − ξ 2, where
ξ ∈ [0, 1] is the ratio of the minor to the major semi-axis, the depolarizing factors are
(symmetry axis along the ê3-direction)

L1 = L2 = 1

4e3

(
2e − (1 − e2) ln

1 + e

1 − e

)
, L3 = 1 − e2

2e3

(
ln

1 + e

1 − e
− 2e

)
, (4.3)

and

L1 = L2 = 1 − e2

2e2

(
−1 +

arcsin e

e
√

1 − e2

)
, L3 = 1

e2

(
1 −

√
1 − e2

e
arcsin e

)
,

for the prolate and oblate spheroids, respectively. In particular, Lj = 1/3 for the sphere.
The integrated extinction for anisotropic homogeneous ellipsoidal scatterers is given by

(4.1) inserted into (2.8). The result is∫ ∞

0
σext(λ) dλ = π2|V |

∑
i=e,m

p̂∗
i · χi · (I + L · χi )

−1 · p̂i . (4.4)

For isotropic material parameters, χe = χeI and χm = χmI, (4.4) reduces to∫ ∞

0
σext(λ) dλ = π2|V |

3∑
j=1

(
κejχe

1 + χeLj

+
κmjχm

1 + χmLj

)
, (4.5)
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where κej = |p̂e · êj |2 and κmj = |p̂m · êj |2 are the polarization vectors projected onto the
mutually orthonormal vectors êj . Note that

∑
j κej = ∑

j κmj = 1 and that the averaged
integrated extinction is characterized by κej = κmj = 1/3. For prolate and oblate spheroids,
which are axially symmetric with respect to the ê3-axis, a plane wave incident at an angle θ

to this axis yields


κe1 + κe2 = 1
κe3 = 0
κm1 + κm2 = cos2 θ

κm3 = sin2 θ

(TE)




κm1 + κm2 = 1
κm3 = 0
κe1 + κe2 = cos2 θ

κe3 = sin2 θ

(TM).

In the limit as the volume goes to zero, the integrated extinction vanishes for a scatterer
with finite susceptibilities. To obtain a non-zero integrated extinction, either the scatterer has
to be conducting or evaluated in the high-contrast limit see, e.g., the PEC disc below. In the
long wavelength PEC limit, see (2.10), the integrated extinction becomes∫ ∞

0
σext(λ) dλ = π2|V |

3∑
j=1

(
κej

Lj

− κmj

1 − Lj

)
. (4.6)

The right-hand side of (4.5) is bounded from above by χi and from below by χi/(1 + χi).
The bounds in (3.3) are sharp in the sense that χi and χi/(1 + χi) are obtained at arbitrary
precision for the infinite needle and disc of constant volume |V |, respectively. In fact, the
upper bound holds for an infinite needle oriented along the ê3-direction (L1 + L2 = 1) with
parallel polarization (κi3 = 1). The corresponding equality for the lower bound holds for the
infinite disc with unit normal vector ê3 (L3 = 1) and parallel polarization (κi3 = 1).

A simple example of (4.5) is given by the homogeneous sphere for which the integrated
extinction is equal to 3π2|V |∑iχi/(χi + 3) independent of κej and κmj , which also is the
result of Bohren and Huffman for the non-magnetic case [4, p 117]. In particular, the PEC
limit (2.10) implies that the integrated extinction for the sphere is equal to 3π2|V |/2. Similar
results for stratified dielectric spheres are obtained using recursive compositions of Möbius
transformations. For the case of two layers, see section 5.4.

The integrated extinction for the PEC elliptic disc is given by (4.6), and the integrals in
(4.2), as the semi-axis a3 approaches zero, are available in the literature [6, p 507], [22]. The
result is 



L1/|V | = 3

4πa3e2
(K − E)

L2/|V | = 3

4πa3e2
(E/(1 − e2) − K)

(L3 − 1)/|V | = − 3E

4πa3(1 − e2)

where a is the major semi-axis, and E = E(e2) and K = K(e2) are the complete elliptic
integrals of first and second kinds, respectively [1, p 590]. We obtain∫ ∞

0
σext(λ) dλ = 4π3a3

3

{
B cos2 φ + C sin2 φ − A sin2 θ (TE)

(B sin2 φ + C cos2 φ) cos2 θ (TM)
(4.7)

where θ and φ are the spherical angles of the incident direction, k̂. The factors A,B and C
are defined as

A = 1 − e2

E
, B = e2(1 − e2)

E − (1 − e2)K
, C = e2

K − E
.
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49.6 V| | 35.9 V| | 35.0 V| | 31.4 V| | 30.9 V| |

Figure 4. The integrated extinctions for the Platonic solids based on MoM calculations [24]. The
Platonic solids are from left to right the tetrahedron, hexahedron, octahedron, dodecahedron and
icosahedron, with 4, 6, 8, 12 and 20 faces, respectively.

Table 1. The eigenvalues γe and the integrated extinction for the Platonic solids in units of |V | in
the high-contrast limit χe → ∞. The last column gives the volume of the Platonic solids expressed
in the edge length a.

Platonic solids γe/|V | γe/a
3 Integrated extinctions |V |/a3

Tetrahedron 5.03 0.593 49.6|V | √
2/12

Hexahedron 3.64 3.64 35.9|V | 1

Octahedron 3.55 1.67 35.0|V | √
2/3

Dodecahedron 3.18 24.4 31.4|V | (15 + 7
√

5)/4

Icosahedron 3.13 6.83 30.9|V | 5(3 +
√

5)/12

Note that the TM polarization vanishes for θ = π/2 independently of φ ∈ [0, 2π). The
integrated extinction (4.7) can also be derived from the long wavelength limit of the T-matrix
approach [3].

5. Numerical results

In this section, we illustrate the theoretical results obtained above by several numerical
examples. Specifically, we calculate the extinction cross sections and the eigenvalues of the
polarizability dyadics for a set of scatterers with isotropic material parameters. These results
are then compared to the theoretical results presented in sections 2–4. The effect of temporal
dispersion is exemplified with the Lorentz dispersive cylinder and the Debye dispersive non-
spherical raindrop in sections 5.2 and 5.3, respectively. In section 5.4, a stratified sphere
is considered to illustrate the effect of heterogeneous and magnetic material properties. A
parameter study of the PEC needle illustrates an object with negligible polarizability dyadics
in the limit of vanishing semi-axis ratio in section 5.5.

5.1. Platonic solids

Since the homogeneous Platonic solids are invariant under a set of appropriate point groups,
their polarizability dyadics are isotropic. By (2.8) this implies that the integrated extinctions are
independent of both polarization and incident directions. The five Platonic solids are depicted
in figure 4, see also table 1, together with the integrated extinctions in the non-magnetic,
high-contrast limit, i.e., χe → ∞.

A common lower bound on the integrated extinctions in figure 4 is obtained by (4.5) for
the volume-equivalent sphere. This lower bound is motivated by Jones’ result [10, theorem 3]
and the fact that the polarizability dyadics are isotropic. The result is 14.80|V |.

Upper bounds on the integrated extinctions are given by the smallest
circumscribing high-contrast spheres, which based on solid geometry are found to be
241.60|V |, 80.54|V |, 61.98|V |, 44.62|V | and 48.96|V | for the tetrahedron, hexahedron,
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Figure 5. The averaged extinction cross section, σ̄ext, in units of πa2 as a function of the frequency
in GHz for a non-magnetic Lorentz dispersive circular cylinder with volume-equivalent sphere of
radius a = 1 cm. The three curves in the left figure have the same long wavelength response
χe = 1. The first two curves with peaks at 2 GHz and 10 GHz are Lorentz dispersive, while the
third curve is non-dispersive. The right figure is a close-up of the 2 GHz peak in the left figure.

octahedron, dodecahedron and icosahedron, respectively, see (2.9). The upper and lower
bounds are seen to be quite close to the numerical values presented in figure 4, at least for
the dodecahedron and icosahedron, which do not deviate much from the volume-equivalent
sphere. Since the Platonic solids are star-shaped with respect to all interior points, a somewhat
different set of upper bounds can be derived from (3.5).

5.2. Lorentz dispersive circular cylinder

The averaged extinction cross section, σ̄ext, as a function of the frequency for a Lorentz
dispersive circular cylinder is depicted in figure 5. The ratio of the cylinder length � to its
radius b is �/b = 2. The cylinder is non-magnetic with electric susceptibility given by the
Lorentz model [4, section 9.1]:

χe(ω) = ω2
p

ω2
0 − ω2 − iων

,

where ωp is the plasma frequency, ν is the collision frequency and ω0 is the resonance
frequency. Explicit values of ωp, ω0 and ν are ωp = ω0 = 4π ·109 rad s−1, ν = 0.7·109 rad s−1

and ωp = ω0 = 20π · 109 rad s−1, ν = 1010 rad s−1, respectively. The Lorentz parameters are
chosen such that all three curves in the left figure have the same long wavelength susceptibility
χe = χe(0) = 1. The first two curves with peaks at 2 GHz and 10 GHz depict the dispersive
case, while the third for comparison illustrates the results for the non-dispersive case. The
three curves in the left figure have the same integrated extinctions, since their long wavelength
susceptibilities coincide. The calculation is based on the T-matrix approach [18].

A numerical calculation of the eigenvalues of the polarizability dyadic for the dielectric
cylinder is performed by adopting the finite element method (FEM). The results are
0.773|V |, 0.749|V | and 0.749|V |. This result implies that the numerically computed averaged
extinction cross section, σ̄ext, in (2.11) is 7.47|V |. The numerically calculated integrated
extinction in the interval f ∈ [0, 70] GHz is 7.43|V | for the first and 7.44|V | for the second
curve in figure 5.

Common lower and upper bounds on the integrated extinctions based on (3.3) are
4.94|V | and 9.87|V |, respectively. A sharper lower bound is 7.40|V | corresponding to the
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Figure 6. The averaged extinction cross section, σ̄ext, in units of πa2 as a function of the frequency
in GHz for a raindrop of volume-equivalent radius a = 2 mm. The smooth curve is for the Debye
model (5.1), while the oscillatory curve is for the non-dispersive case. The two curves have the
same long wavelength response and therefore also the same integrated extinctions.

volume-equivalent sphere. An upper bound can for comparison be obtained from (3.5). For
�/b = 2 this implies ψ = 5 and the upper bound 8.23|V |, which is sharper than the bound
based on (3.3).

The figure on the right-hand side of figure 5 is a close-up of the 2 GHz peak. The boundary
curve of the box corresponds to an artificial scatterer with averaged extinction cross section
supported at the peak, i.e., for an averaged extinction cross section that vanishes everywhere
outside the box. The integrated extinction for the boundary curve of the box and the three
curves in the left-hand side of figure 5 coincide.

5.3. Debye dispersive non-spherical raindrop

The averaged extinction cross section, σ̄ext, as a function of the frequency for a falling raindrop
in figure 6. The axially symmetric drop depicted in figure 6 is parameterized by the polar
angle θ and the radial distance

r(θ) = r0

(
1 +

10∑
k=0

ck cos kθ

)
,

where r0 is determined from the condition of the volume equivalence with the sphere of radius
a, i.e., |V | = 2π

3

∫ π

0 r3(θ) sin θ dθ with |V | = 4πa3/3. The radius of the volume-equivalent
sphere used in figure 6 is a = 2 mm with associated shape coefficients c0 = −0.0458,

c1 = 0.0335, c2 = −0.1211, c3 = 0.0227, c4 = 0.0083, c5 = −0.0089, c6 = 0.0012, c7 =
0.0021, c8 = −0.0013, c9 = −0.0001 and c10 = 0.0008 [2]. The calculation is based on the
T-matrix approach [18].

The smooth curve in figure 6 is for the non-magnetic Debye model [4, section 9.5]

χe(ω) = χ∞ +
χs − χ∞
1 − iωτ

, (5.1)

where τ is the relaxation time and χ∞ and χs are the short and long wavelength susceptibilities,
respectively. Pure water at 20 ◦C is considered with χs = 79.2, χ∞ = 4.6 and τ = 9.36 ps
[14, p 43]. The curve with largest variation is for the non-dispersive case with a susceptibility
identical to the long wavelength limit, χs, of (5.1).
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Figure 7. The extinction cross section, σext, in units of 2πa2 as a function of the radius ka

for a dielectric stratified sphere with two layers of equal volume. The electric and magnetic
susceptibilities are χe1 = 2 and χm1 = 1 for the core and χe2 = 1 and χm2 = 2 for the outer layer.

Since the long wavelength susceptibilities coincide for the two curves in figure 6, their
integrated extinctions are equal according to (2.11). The eigenvalues of the polarizability
dyadics for the raindrop can be obtained by numerical computations. A finite element method
(FEM) computation gives the three eigenvalues: 2.43|V |, 3.21|V | and 3.21|V |, respectively.
This result implies that the numerically computed averaged extinction cross section, σ̄ext, in
(2.11) is 29.1|V |. If we numerically integrate the average extinction cross section in figure 6
over f ∈ [0, 100] GHz, we get 26.4|V | for the dispersive and 25.6|V | for the non-dispersive
curve, respectively.

Lower and upper bounds on the integrated extinctions, given by (3.3), are 9.75|V | and
782|V |, respectively, which are rather crude. A more accurate lower bound is given by the
non-magnetic, volume-equivalent sphere with static susceptibilities χe = χs, for which (4.5)
yields 28.5|V |. The star-shaped bound in section 3.3 is also applicable. The result for the
raindrop is 32.15|V |. We observe that both the lower and upper bounds approximate the true
value very well.

5.4. Stratified sphere

Due to spherical symmetry, the polarizability dyadics of a stratified sphere are isotropic
and easily computed by recursive applications of Möbius transformations. In particular, the
integrated extinction for two layers with electric and magnetic susceptibilities χe1 and χm1 in
the core, and χe2 and χm2 in the outer layer, respectively, is∫ ∞

0
σext(λ) dλ = 3π2|V |

∑
i=e,m

χi2(χi1 + 2χi2 + 3) + ς3(2χi2 + 3)(χi1 − χi2)

(χi2 + 3)(χi1 + 2χi2 + 3) + 2ς3χi2(χi1 − χi2)
, (5.2)

where ς is the ratio of the inner to the outer radius. The special cases ς = 0 and ς = 1
correspond to homogeneous spheres with susceptibilities χi2 and χi1, respectively, see
section 4. Moreover, both χi1 = χi2 and χi2 = 0 yield the homogeneous sphere of
susceptibility χi1, with the volume of the sphere being a fraction ς3 of the volume |V | in
the latter case.

The extinction cross section, σext, as a function of the radius ka for the stratified sphere
with two layers of equal volume, ς = 1/

3
√

2, is depicted in figure 7. The used susceptibilities
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Figure 8. The extinction cross section, σext, in units of 2πa2 as a function of ka for the PEC
needle of length 2a. The needle is approximated by a prolate spheroid with semi-axis ratio 10−3

for the outermost, 10−5 for the intervening and 10−7 for the innermost curve. The calculation is
based on the T-matrix approach [3].

are χe1 = 2 and χm1 = 1 in the core, and χe2 = 1 and χm2 = 2 in the outer layer. The
calculations are based on the Mie-series approach [17]. Note that the curve in figure 7
approaches twice the geometrical cross section area in the short wavelength limit. Compare
this observation with the extinction paradox [29, pp 107, 108].

The numerically integrated extinction is 19.1|V | for ka ∈ [0, 30] and 19.3|V | for
ka ∈ [0, 100], with relative errors of 1.7% and 0.5%, respectively, compared to the theoretical
value 19.4|V | given by (5.2).

Lower and upper bounds on the integrated extinction based on the inequality in (2.9)
are 14.8|V | and 23.7|V |, respectively, corresponding to the volume-equivalent homogeneous
sphere with minimal and maximal susceptibilities, infx∈V χi and supx∈V χi , respectively. Note
that this upper bound coincides with the one obtained from (3.5), but that both the lower and
upper bounds based on (2.9) are sharper than those given by (3.3).

5.5. PEC needle

The integrated extinction for the PEC needle of length 2a oriented along the ê3-direction is
given by (4.3) and (4.6) in the limit ξ → 0. The result is

∫ ∞

0
σext(λ) dλ = 4π3a3

3



O(ξ 2) (TE)

sin2 θ

ln 2/ξ − 1
+ O(ξ 2) (TM).

(5.3)

The right-hand side of (5.3) can also be derived from the long wavelength limit of the T-matrix
[3].

The integrated extinction (5.3) is seen to vanish for both polarizations in the limit
ξ → 0. Since the extinction cross section is non-negative, this implies that it vanishes
almost everywhere except on a set of measure zero consisting of the denumerable resonances
for which an integer multiple of λ/2 coincides with the length of the needle. This result
is illustrated numerically in figure 8, which shows the extinction cross section, σext, for the
PEC needle for the TM polarization at normal incidence. Note that, due to symmetry, only
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resonances corresponding to ka equal to an odd multiple of π/2 are excited at normal incidence.
The numerically integrated extinctions in figure 8 agree well with (5.3). The relative errors
are less than 0.5% with an integration interval ka ∈ [0, 12] for the three curves.

6. Concluding remarks

The integrated extinction is an example of what is referred to in modern physics as a sum rule
or a dispersion relation [20]. The mathematical derivation of the dispersion relations is based
on the assumption that certain linear and causal physical quantities with known high-frequency
(short wavelength) asymptotic are boundary values of holomorphic functions in the frequency
variable.

The major results of this paper are the proof and illustrations of the integrated extinction
for linear, passive, and anisotropic scatterers. It is shown that the integrated extinction is
monotonically increasing in the material properties. Moreover, the electric and magnetic
material properties contribute equally to the integrated extinction. It is also shown that the
integrated extinction is useful in deriving physical limitations on broadband scattering.

The integrated extinction is particularly important from an antenna point of view, since
it generalizes the physical limitations on the antenna performance derived by Chu [5] for
the smallest circumscribing sphere. These new limitations, which can be shown to relate
bandwidth and directivity of any antenna in terms of volume and shape, are reported in [7].
The integrated extinction is also of great interest in applications to broadband scattering by
artificial material models such as metamaterials. In this application, it provides physical
limitations on scattering by general material models [25]. Moreover, the bounds presented
in section 3 may be of use to bound material parameters in inverse scattering problems. All
these applications to material modeling and inverse scattering problems are currently under
investigation and will be reported in forthcoming papers.

Additional theoretical work on the integrated extinction also includes bi-anisotropy and
diamagnetics, which will be reported elsewhere. Finally, it should be noted that the concept
of the integrated extinction with minor changes also holds in linear acoustics [15, section 7].
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Appendix. The polarizability dyadics

For an anisotropic scatterer modeled by the material dyadic τ (electric susceptibility dyadic
χe without a conductivity term or magnetic susceptibility dyadic χm), the total electric field
E (similarly for the magnetic field H) satisfies{∇ × E(x) = 0

∇ · ((τ (x) + I) · E(x)) = 0
x ∈ R

3.

Here, τ is assumed to be a symmetric dyadic at all points x and sufficiently regular to justify
the operations below.

Decompose the total field E as Ej = E0êj + Esj , where j = 1, 2, 3. The pertinent
partial differential equation for the scattered field Esj is then{∇ × Esj (x) = 0

∇ · ((τ (x) + I) · Esj (x)) = −E0∇ · (τ (x) · êj )
x ∈ R

3 (A.1)

together with the asymptotic condition Esj (x) → O(|x|−3) as |x| → ∞.
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The first condition in (A.1) implies that there exists a potential �j related to the scattered
field as Esj = −∇�j satisfying{∇ · ((τ (x) + I) · ∇�j(x)) = E0∇ · (τ (x) · êj )

�j (x) → O(|x|−2) as |x| → ∞ x ∈ R
3. (A.2)

This problem has a unique solution. The entries of the polarizability dyadic γ (γe or γm

depending on whether the problem is electric or magnetic) are then (i, j = 1, 2, 3)

êi · γ · êj = 1

E0
êi ·

∫
R

3
τ (x) · Ej (x) dVx. (A.3)

Scale this solution by a factor α, i.e., let x −→ x′ = αx, with material dyadic
τ ′(x′) = τ (x), and denote the solution to the new problem by �′

j (x
′). The new problem then

satisfies {∇′ · ((τ ′(x′) + I) · ∇′�′
j (x

′)) = E0∇′ · (τ ′(x′) · êj )

�′
j (x

′) → 0 as |x′| → ∞ x′ ∈ R
3

or in the unscaled coordinates{
α−2∇ · ((τ (x) + I) · ∇�′

j (αx)) = E0α
−1∇ · (τ (x) · êj )

�′
j (αx) → 0 as |x| → ∞ x ∈ R

3.

Due to the unique solubility of the boundary value problem (A.2), �′
j (x

′) = α�j(x), and
consequently E′

j (x
′) = Ej (x) = Ej (x

′/α). The polarizability dyadic for the scaled problem
then becomes

êi · γ ′ · êj = êi ·
∫

R
3
τ ′(x′) · E′

j (x
′) dVx′ = α3êi ·

∫
R

3
τ (x) · Ej (x) dVx,

and we see that γ scales with the volume |V | ∼ α3.

A.1. Symmetry

The polarizability dyadic γ is symmetric, since τ is assumed symmetric at all points x. In
fact, from (A.3),

êi · γ · êj = êi ·
∫

R
3
τ (x) · êj dVx − 1

E0
êi ·

∫
R

3
τ (x) · ∇�j(x) dVx. (A.4)

The last integral in (A.4) is rewritten as

êi ·
∫

R
3
τ (x) · ∇�j(x) dVx =

∫
R

3
∇ · (êi · τ (x)�j (x))dVx −

∫
R

3
∇ · (êi · τ (x))�j (x) dVx

= −
∫

R
3
∇ · (τ (x) · êi ) �j (x) dVx

= − 1

E0

∫
R

3
∇ · ((τ (x) + I) · ∇�i(x)) �j (x) dVx,

due to (A.2) provided τ is symmetric at all points x. Furthermore,

êi ·
∫

R
3
τ (x) · ∇�j(x) dVx = − 1

E0

∫
R

3
∇ · {((τ (x) + I) · ∇�i(x))�j (x)} dVx

+
1

E0

∫
R

3
∇�j(x) · ((τ (x) + I) · ∇�i(x)) dVx

= 1

E0

∫
R

3
∇�j(x) · ((τ (x) + I) · ∇�i(x)) dVx.
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The polarizability dyadic (A.4) therefore becomes

êi · γ · êj = êi ·
∫

R
3
τ (x) · êj dVx − 1

E2
0

∫
R

3
∇�j(x) · ((τ (x) + I) · ∇�i(x)) dVx,

which clearly is symmetric in the indices i and j if τ is symmetric at all points x.

A.2. High-contrast limit

In the high-contrast limit, when the entries of the material dyadic become infinitely large
independent of x, the appropriate surface integral representation of the polarizability dyadic
is [15, p 22]

êi · γ · êj = 1

E0
êi ·

N∑
n=1

∫
Sn

(ν̂(x)�j (x) − xν̂(x) · ∇�j(x)) dSx,

where Sn, n = 1, 2, . . . , N, denote the bounding surfaces (outward-directed unit normal ν̂)
of the domain outside the material (we assume that τ is compactly supported). Moreover,
�j(x) = �j(x) − E0xj is the solution to (n = 1, 2, . . . , N)


∇2�j(x) = 0, x outside Sn∫

Sn

ν̂(x) · ∇�j(x)|+ dSx = 0

�j(x) → −E0xj + O(|x|−2) as |x| → ∞.

With similar arguments as above, we find that the eigenvalues of the high-contrast polarizability
dyadic also scale with the volume. For the relation with the capacitance concept, we refer
to [15].
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